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Abstract

High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is

essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Syn-

ergia, a high-fidelity parallel beam dynamics simulation package with fully three-dimensional space-charge capabilities

and a higher order optics implementation. We describe the computational techniques, the advanced human interface,

and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks com-

paring to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo

creation, and emittance growth in the Fermilab Booster accelerator.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, accurate modeling of beam dynamics in high-current low energy proton synchrotrons

has become necessary because of new machines under consideration for future applications, such as the

High Energy Physics neutrino program, and the need to optimize the performance of currently operating

machines, such as the Spallation Neutron Source and the Fermilab Booster. These machines are character-
ized by high currents and require excellent control of beam losses, thus space-charge initiated halo forma-

tion is an essential component of their modeling. In order to obtain accurate predictions for realistic
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conditions of operation, single-particle optics and self-consistent multi-particle effects must be combined in

a single simulation code.

Several computer simulations of space-charge effects in circular accelerators using particle-in-cell tech-

niques have been developed [1–3]. These simulations have emphasized the transverse dynamics while using

a less rigorous approach for the longitudinal dynamics. Synergia [4] is a package for state-of-the-art sim-
ulation of linear and circular accelerators with a fully three-dimensional treatment of space charge, and the

ability to use arbitrary order maps for the single-particle optics modeling.

Synergia is designed to be a general-purpose framework with an interface that is accessible to accelerator

physicists who are not experts in simulation. Space-charge calculations are computationally intensive, typ-

ically requiring the use of parallel computers. The implementation of Synergia is fully parallel, including the

particle tracking and space-charge modules. The code itself is a hybrid system based on previously devel-

oped accelerator physics codes. Synergia includes enhancements to these codes as well as new integration

and interface modules. There is at least one other example of an accelerator framework which reuses exist-
ing codes [5]. Synergia distinguishes itself by being designed to provide a high level framework specifically

for studying 3D multi-particle dynamics in a massively parallel computing environment.

Synergia was designed to be distributable to the particle accelerator community. Since compiling hybrid

code can be a complicated task which is further complicated by the diverse set of existing parallel comput-

ing environments. Synergia includes a build system that allows it to be compiled and run on various plat-

forms without requiring the user to modify the code and/or build system.

In this paper, we give a brief description of the components used in Synergia as well as the details in-

volved in combining them into a single framework. We pay close attention to the build system, in keeping
with the ‘‘distributable’’ goal mentioned above. We also describe how we have taken advantage of the Py-

thon scripting language [6] to give us a flexible human user interface with very little effort. In addition, we

present a few Synergia applications. First, we compare with analytic calculations and predictions from

other codes to verify the accuracy of our implementation. Then, in order to demonstrate the capabilities

of the code in a realistic scenario, we present results from simulations of the Fermilab Booster [7].
2. Components

The two packages at the core of Synergia are IMPACT [10] and the mxyzptlk/beamline libraries [11]. We

have added glue code and a human-interface wrapper to these packages, together with necessary extensions

of their modules, to form the Synergia package.

2.1. IMPACT

Synergia uses IMPACT for its rf modeling and, most importantly, particle-in-cell (PIC) implementation
of space-charge. IMPACT contains a suite of three-dimensional Poisson solvers that are invoked in the

middle of each step of a split-operator-based model. In this model, the Hamiltonian governing single par-

ticle dynamics in an intense beam is written as
H ¼ H ext þ H sc; ð1Þ

where Hext is the Hamiltonian in the presence of externally applied fields only (i.e. fields generated by beam-

line elements) and Hsc is the Hamiltonian which describes the effects of the space-charge fields. The electro-
magnetic potential associated with these fields is determined by ignoring the fine-grained texture caused by

the discrete nature of the particles and treating the collective fields by a self-consistent average or mean

field. We calculate the potential in the rest frame of the beam particles, where for most accelerator problems

the motion of the particles with respect to each other is non-relativistic. In this case, the effect of the electric
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and magnetic self-fields are both deduced from the scalar potential, which is related to the beam density, q,
by Poisson�s equation
1 Th
r2/ ¼ �q=�0. ð2Þ

The Hsc term calculated with this procedure is simply proportional to the scalar potential, with a propor-

tionality constant that varies as 1/c2 to account for the azimuthal magnetic field associated with the longi-

tudinal beam current. Since the scalar potential depends only on coordinates and not momenta, the effect of

Hsc on a particle is a change in momentum, i.e. a space-charge kick, which we denote by Msc, and it is cal-

culated using PIC techniques, as described in [10]. The effect of Hext is expressed using the transfer map for

the associated beamline element, Mext, which can be calculated very efficiently to arbitrary order, using Lie
algebraic techniques (in the current Synergia implementation we only use up to second-order maps, see Sec-

tion 2.2). Given Msc and Mext, we use a second-order split-operator algorithm
MðhÞ ¼ Mextðh=2ÞMscðhÞMextðh=2Þ þ Oðh3Þ ð3Þ

to propagate particles through a step in the independent variable. The above formula is accurate through

second order in the step size h in approximating the effect of the full Hamiltonian, H, see [10]. The algo-

rithm for the arbitrary order case is discussed in [12]. The problem of calculating beam propagation includ-

ing space-charge effects therefore factorizes into the problem of calculating the two effects one at a time and

combining them as above. A key advantage of this splitting, as opposed to one that separates the Hamil-

tonian into pieces involving only coordinates and only momenta, is that in our approach the rapid variation

of the external fields is separated from the more slowly varying space-charge fields. A simulation step in-

volves transport of a distribution of particles through half a step using Mext, solution of Eq. (2) using
the new positions to determine Msc, application of Msc which produces an instantaneous change in parti-

cles momenta, and finally transport through the remaining half step using Mext and the new momenta. The

choice of step size depends on the expected strength of the space-charge effects, allowing for performance

optimization.

One subtle, but important, issue in the implementation of our algorithm is the use of the arc length s as

the independent variable instead of the time t. This allows us to use the fully developed machinery of map-

based methods for beam dynamics calculations [13]. The solution of the Poisson equation requires knowl-

edge of the charge density at fixed time t, so during a simulation step particle coordinates are transformed
from a fixed s to a fixed t and back to a fixed s representation. We implement this transformations using a

ballistic approximation: during the transformation it is assumed that the particles move on predefined tra-

jectories, namely straight lines with respect to the reference trajectory. The transformation between the

phase-space variables (xin, px, y
in, py, Dt, DE) and the fixed-time coordinates (x, y, z) is then given by
x ¼ xin þ pxDt
ðDE þ ErefÞ=c2

;

y ¼ yin þ
pyDt

ðDE þ ErefÞ=c2
;

z ¼ zref þ
Dt=c

ðDE þ ErefÞ=c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE þ ErefÞ2 � m2c4 � c2p2x � c2p2y

q
;

ð4Þ
where zref and Eref are the longitudinal position and energy of the reference particle,1 respectively. This ver-

sion of the ballistic approximation neglects any curvature effects in the case of a circular accelerator, so it is

valid for simulations of beam slices whose longitudinal extent is small compared to the radius of the

accelerator.
e reference particle is a hypothetical particle following the design trajectory of the accelerator.
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We have extended the original IMPACT in several ways. IMPACT now includes an injection module,

allowing multi-turn injection modeling. We have extended the beam generation module to include a six-

dimensional Gaussian distribution with general correlations (see Section 3.2.4). We have also improved

the memory management, allowing for an arbitrary number of beamline elements. Finally, we have

enhanced the IMPACT particle data structure to allow following individual particles throughout the
simulation and calculating particle tunes.

2.2. mxyzptlk/beamline libraries

The mxyzptlk/beamline package is a set of C++ libraries covering a wide range of accelerator physics

computations. Even though the original code is over 10 years old, the libraries are written in a modern style,

including real classes with encapsulation and well-considered interfaces. The package includes basic_toolkit,

a set of useful utility classes such as Vector, Matrix, etc., beamline, classes for modeling elements of an
accelerator beamline (the various magnets, rf cavities and other elements that make up a particle acceler-

ator), mxyzptlk, classes for Lie algebraic accelerator physics calculations [13], and physics_toolkit, a set of

classes for analysis and computation.

Synergia takes advantage of mxyzptlk/beamline�s arbitrary-order transfer maps, which are calculated

using Lie algebraic techniques. The current Synergia implementation utilizes first- and second-order maps,

but generalization to arbitrary orders is planned for the near future. Another desirable feature of the

mxyzptlk/beamline package for our purposes is the ability to read accelerator descriptions in the MAD8

language [14]. The MAD8 parser in beamline is limited to processing accelerator lattice descriptions since
the Synergia interface is much more flexible than the MAD8 command language. In a generic Synergia run

lattice elements from MAD8 files can be combined in arbitrary ways and even mixed with native IMPACT/

Synergia elements. Note that accelerators are made of repetitive sequences of special magnet arrangements.

Such a repetitive sequence is called the lattice and the special magnet arrangement a lattice unit or lattice

cell.
3. Synergia

Synergia is the combination of IMPACT, the mxyzptlk/beamline libraries, glue code to get the two pack-

ages talking to each other, and a user-interface wrapper providing a straightforward, yet powerful, human

interface. Fig. 1 shows the relationship between Synergia components, MAD8 files, and analysis tools.

3.1. Build system

Portability has been a major design concern in creating Synergia. We rely on multiple components writ-
ten in multiple languages. While using multiple components allows us to quickly put together a powerful

package, it also creates a configuration management problem. Multiple-language issues are particularly

problematic because calling conventions vary from platform to platform. We solve the multiple language

part of the problem by writing all of the inter-language wrapper code in terms of macros that can be rede-

fined for various platforms. We solve configuration management problem by incorporating a modern build

system based on the GNU Autotools [15] package for portable compilation to provide consistent builds on

all platforms.

In principle, building Synergia is as simple as executing ‘‘./configure && make && make install’’
in the mxyzptlk directory followed by ‘‘./configure && make’’ in the Synergia directory. In practice,

many options to configure are available. The two principles we have followed in constructing the build

system are: (1) modifying the source (including Makefiles) should never be necessary, and (2) all options
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should come with reasonable defaults. To date, Synergia builds without modifications on Linux systems

using either the Portland Group F90 compiler or the Intel F90 compiler, g++ or Intel CC, and either
the MPICH or LAM implementations of the Message Passing Interface (MPI). Synergia also builds with-

out modifications on AIX, using XL Fortran, Visual Age C++ and POE.

3.2. Human interface

The user-level interface to Synergia consists of a set of Python classes that wrap the low-level interfaces

to the code. The Python interface generates an input file that is read by the simulation itself. The Python

interpreter need not be present at run time. The Python interface can even generate a job to be automat-
ically transferred and submitted to a remote machine where no Python interpreter is available.

To create a Synergia job, the user writes a short Python script utilizing these classes. An example script

excerpt is shown in Fig. 2. The excerpt describes a FNAL Booster simulation which utilizes Synergia�s
matching module, the MAD parser, and demonstrates the use of simple Python syntax to run for multiple

turns. The use of Python has several advantages: There is no application-specific syntax to learn. A user

familiar with Python will be able to understand the entire interface. A user unfamiliar with Python will

be able to copy an example script and modify it with little difficulty. Although most examples will only

use Python trivially, the full power of the language is available should it be needed. Last, but not least,
the use of an existing scripting language greatly simplifies the implementation, minimizing both the devel-

opment time and the probability for introducing bugs.

3.2.1. Job description

Every Synergia job is a simple Python script. Synergia provides the class Impact_parameters as an

interface to the internal parameters of IMPACT, including input beam, energy, space-charge parameters,

etc. The accelerator lattice can be defined using elements from an external MAD8 file.

Synergia provides a basic matching module to generate matched beams, utilizing linear optics calcula-
tions from mxyzptlk/beamline for lattice function determination. We also provide an interface to our Octave

utilities package that generates a matched beam in the presence of space charge by solving the rms envelope

equations.



Fig. 2. Example excerpt of a Synergia Python script specifying a simulation with multiple injection turns utilizing basic Python. The

lattice description is take from a MAD8 file; beam matching utilizes Synergia�s matching module.
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3.2.2. Job creation and submission

Synergia jobs can be arbitrarily complex. Typically, the user will want to run several different jobs

varying only a few of the many input parameters. Synergia provides several facilities to assist the user in

creating, submitting and managing simulation runs.

A Python module options provides a simple method to write scripts accepting command-line arguments

for Synergia and user-defined parameters. When a Synergia job script is run, the command-line options for

that job are automatically recorded in a manner so that they can be edited and/or reinvoked. Synergia also

records all job parameters in a human-readable description file.
Synergia automatically generates batch system submission scripts based on a user-supplied template.

Several example templates are provided, including templates for single-processor machines, multi-processor

machines, the PBS batch system and more. Optionally, jobs can be defined to run on remote machines. Syn-

ergia generates scripts to export the input files to the remote machine, submit the job, and retrieve the files

from the remote machine once the job is finished.

3.2.3. Diagnostics

A number of diagnostics are provided by default during the simulation run. In addition, we provide tools
to allow users to analyze simulated data after a simulation has completed. The standard diagnostic utilities

are evaluated at each split-operator step and include calculations of the second, third and fourth moments

of all six degrees of freedom, two-, four-, and six-dimensional emittances, and all pairwise correlations for

beam components.

For post-processing, we provide the ability to dump the entire beam, or a sampled subset of the beam, at

any simulation step. Files can be dumped in plain text or HDF5 format [16]. Each particle is saved along
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with a unique tag so that individual particles can be tracked throughout the simulation. We provide tools

for rearranging a series of particle dumps into individual tracks, both for diagnostic purposes and calculat-

ing particle tunes. The output format of the particle information dumps can be easily interfaced to visual-

ization packages such as OpenDX [17]. An example of such visualization of a FNAL Booster simulation is

shown in Fig. 3.

3.2.4. Distributions with general correlations

Synergia can generate Gaussian beams with arbitrary two-component correlations. Generation of

random distributions with finite statistics leads to statistical errors in the moments of the generated distri-

butions. We use, typically, Oð106Þ, macroparticles to simulate Oð1012Þ real particles. The statistical errors in
the simulation are therefore an artifact of the simulation only. Even a very small deviation in the correlation

coefficients can make the difference between a matched beam and a beam that displays measurable phase-

space oscillations. Some of the effects of space charge are very similar to the effects of a mismatched beam.
In order to distinguish small space-charge effects from statistical fluctuations, it is advantageous to correct

for the statistical fluctuations before the simulation starts. There are other cases, such as parameter scans,

where running without space charge and a small number of macroparticles, say Oð103Þ, where the statistical
fluctations would be very important. We correct for these errors at the level of two-component correlations

in the following procedure.

We want to generate a set of random vectors {r} such that
hrji ¼ �rj ð5Þ

and
hrjrki ¼ Cjk; ð6Þ

where �rj and Cjk are given. A typical application would be a beam with no offset ð�rj ¼ 0Þ and Cjk chosen to

create a matched beam. We start by generating a finite set of (nominally) uncorrelated random vectors {q}.
These vectors will have first and second moments
�qj � hqji ð7Þ
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and
X jk � hqjqki. ð8Þ
In the limit of infinite statistics, Xjk ! djk. Finite effects cause deviations from this limit, which will intro-

duce small, but unphysical, deviations from the desired distribution. In order to correct for these effects, we

use the transformation
rj ¼ Ajkðqk � �qkÞ þ �rj; ð9Þ

where
C ¼ GGT; ð10Þ
X ¼ HHT ð11Þ
and
A ¼ GH�1. ð12Þ

The resulting set of vectors {r} will have the correct first and second moments, with no error contribution

due to finite statistics.
3.3. Multi-turn injection

Synergia provides an injection module to allow modeling of multi-turn injection in a completely trans-

parent manner. In multi-turn injection, particles are injected over a time period longer than it takes for the

beam to travel around the ring. Newly injected particles have to be merged with the particles that have

already propogated one or more times around the machine. Synergia models this process via an injection

module that generates additional macro-particles according to a given distribution. The total beam current

represented by these macro-particles is a parameter. An injection ‘‘element’’ can be placed anywhere be-

tween beamline elements in a given lattice, thus multi-turn injection can be simulated by simply including

such an element in a loop (see Fig. 2). In our implementation, both the number of macro-particles and the
beam current increase with any subsequent use of the injection module. To allow for injection painting, the

injection module includes in its argument list vertical, horizontal, and longitudinal phase offsets for the

center of the beam distribution.
4. Parallel performance

We have run benchmarks of our code on four different clusters under a variety of configurations. Our
benchmark is a simulation of a single revolution of the FNAL Booster (see Section 5). The simulation

included 2.7 million particles undergoing 100 space-charge kicks on a 65 · 65 · 65 grid.

Three of the clusters are Linux clusters: lqcd [23], heimdall [24], and Alvarez [25]. Our benchmarks in-

clude a sampling of the range of currently available networking options for Linux: 100 Mbit Ethernet,

Gigabit Ethernet and Myrinet 2000. We also compared the performance of the Intel fortran compiler

(ifc) with the Portland Group fortran compiler (pgf90). For the former, the code was compiled with the

optimization setting‘‘-O2’’. For the latter, the code was compiled with the setting ‘‘-fast’’. The fourth

cluster we used for benchmarking was Seaborg [26], the 6080-processor IBM SP at NERSC.
The propagation of particles by applying external maps is trivially parallelizable; the particles are inde-

pendent of each other. In the space-charge calculation, however, each particle feels the effect of every other

particle. Some global communication between processors in a parallel calculation scheme is therefore
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required. The scaling behavior of a parallel space-charge calculation must eventually be limited by network-

ing performance.

The results of our benchmarks are displayed in Fig. 4. Overall, we find that Synergia scales very well up

to a certain number of processors determined by the problem size and networking used in each case. The

clear winner in scaling is the specialized configuration found in Seaborg. The fastest Linux clusters, how-

ever, showed overall superior performance. We can also see that Gigabit or Myrinet is necessary for a

Linux cluster to effectively take advantage of more than a few processors. These tests were insufficient to
distinguish between Gigabit and Myrinet.
5. Synergia tests and applications

In order to verify the accuracy of our simulation, we model several cases simple enough to perform

comparisons with semi-analytic calculations. We start by comparing the evolution of a K-V beam

distribution in an idealized FODO channel with the Synergia prediction. A K-V distribution is a beam
distribution in the four-dimensional transverse phase-space which lies on a d function shell. Its projec-

tions onto any transverse plane are uniform elliptical distributions with sharp boundaries [28]. A

FODO channel is a periodic focusing structure composed of a sequence of focusing (F) and defocusing

(D) quadrupoles separated by nonfocusing elements (O), such as a drift space. Then, we compare the

Synergia prediction for the evolution of the second moments of a Gaussian beam distribution in a

FODO channel to the solution of the envelope equations (13) and (14). We also compare FODO chan-

nel results from Synergia with another space-charge code. Finally, we compare the tune shifts predicted

by Synergia to that of the Laslett tune shift formula [20].
The first realistic application of Synergia has been to model the FNAL Booster [7] during the first few

hundred turns after injection. First, we study the incoherent tune shifts for different beam currents. Then,
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we study patterns of halo formation quantitatively, as well as qualitatively. Finally, we examine emittance

growth in various beam configurations.

5.1. Synergia benchmarking

For a K-V distribution, the charge density across the beam is constant and the forces associated with

space charge vary linearly with the coordinates x and y. The evolution of the beam envelope can be calcu-

lated exactly by integrating the envelope equations [28]. As a first check, we compare the evolution of a K-V

beam as predicted by Synergia to the solution of the envelope equations:
a

Fig. 5.

solutio
r00
x þ Kxrx �

�2rms

r2
x

¼ n
4ðrx þ ryÞ

ð13Þ
and
r00
y þ Kyry �

�2rms

r2
y

¼ n
4ðrx þ ryÞ

; ð14Þ
where n = 4Q2r0k/(Ab
2c3), with Q is the charge of a beam particle in units of e, r0 is the classical proton

radius, k is the line charge density, A is the atomic number, Kx/y are the focusing strengths, rx = Æx2æ1/2,
ry = Æy2æ1/2, and �rms is the unnormalized rms emittance (a discussion on different emittance definitions

and beam phase space can be found in [30]):
�rms ¼ hx2ihx02i � hxx0i2 ¼ hx2i
bTwiss

. ð15Þ
Note that the rms value of x in a K-V beam of radius a is given by Æx2æ = a2/4.

In Fig. 5, we compare the numerical solution of Eqs. (13) and (14) to the Synergia result for the FODO

channel defined by the following MAD8 [14] file:

drs:drift, l = 7.44d-2

drl:drift, l = 14.88d-2

qd7:quadrupole, l = 6.10d-2, k1 = �103.11d0

qf7:quadrupole, l = 6.10d-2, k1 = 103.11d0

channel:line = (drs, qd7, drl, qf7, drs)
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(a) Comparison of the Synergia prediction for the evolution of an 0.5 A beam in the FODO lattice described in the text to the

n of the envelope equations. (b) Effect of including space charge in the matching condition, as calculated using Synergia.
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The file describes a channel consisting of an empty tube, i.e., drift, (drs) followed by a quadrupole

magnet (qd7), another drift (drl), another quadrupole (qf7) and a copy of the initial drift (drs). The lengths

in meters are given by the l parameter. The parameter k1 describes the magnetic field gradient in units of
meters�2 according to
a

Fig. 6.

equatio

the cel
k1 ¼
1

ðBqÞ
oBy

ox
; ð16Þ
where Bq is the ratio of the particle momentum to its charge.
For this comparison, we used a K-V beam with a kinetic energy 0.0067 GeV and two-dimensional trans-

verse emittance 3.1 · 10�6 m rad in both the horizontal and vertical planes. Fig. 5(a) shows the comparison

of the calculated horizontal beam width for a matched beam of 0.5 A. Fig. 5(b) shows the effects of taking

into account space charge in the matching procedure in the evolution of the horizontal beam width. The

Synergia prediction is consistent with the numerical solution of the envelope equations. The differences

between the curves in Fig. 5(b) are a measure of the magnitude of the space-charge effect.

In the case of a more realistic beam distribution, such as a Gaussian distribution, the envelope equations

can model the evolution of the second moments of the beam distribution under the assumption that the
emittance evolution is known [28]. In the cases presented here we assume that the emittance remains

constant. We compare the prediction of Synergia with the prediction of the envelope equations for the

evolution of the width of a Gaussian beam in a lattice cell of the FNAL Booster [7]. Here, we use a beam

that is Gaussian in the transverse coordinates and uniform in the longitudinal coordinate. The results are

shown in Fig. 6(a). In Fig. 6(b), we show the effects of including space charge in the matching condition, as

predicted by Synergia. The current used in this simulation is a typical operating current for the machine. In

this case, the space-charge effect is small for the rms width change in one Booster cell. Traversing a single

cell is a tiny fraction of the entire cycle in which the beam passes through 480,000 cells.
It is also important to cross-check the results from Synergia with other space-charge simulations. A

benchmarking exercise comparing several codes, including Synergia, appears in [8]. As a simpler test, we

include a consistency test comparing Synergia with the MaryLie/IMPACT (ML/I) code [9]. The

comparison is done for two cases:
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(1) The FODO channel described above, using a 0.5 A matched K-V beam with two-dimensional trans-

verse emittance of 1.0 · 10�6 m rad in both planes.

(2) A 0.1 A cold proton beam in a FODO channel with rf cavities.

For each of these comparisons, we used a common input file of beam particles for both the Synergia and

ML/I simulations. In Fig. 7, we show the comparison of the horizontal rms beam size predictions from the

two codes for case 1. The agreement is very good. The difference between the prediction of the two simu-

lations for the rms width of the beam at the end of the channel is 0.27%. This slight variation in the final

answer is due to minor differences in the implementation of the Poisson solver and differences in the prob-

lem description in the simulation, such as the number of slices used in the split-operator particle advance

algorithm.

In Fig. 8, we show the results for case 2. The agreement between the two codes is excellent. In this case,
we model a cold, uniform density, 100 mA proton beam, with kinetic energy of 250 MeV, in a FODO chan-

nel with rf cavities. The channel consists of two 0.15 m focusing quadrupoles (fquad), with a gradient of

6 T/m, a 0.30 m defocusing quadrupole (dquad), with �6 T/m gradient, four 0.10 m drifts (dr), and two

1 m rf cavities (cav), with frequency 700 MHz. The rf cavities are treated by computing the linear transfer

maps, including the effects of acceleration, and using numerical integration of the map coefficients. This

requires a knowledge of the on-axis electric field and its derivative. For this example, the functional form

of the field is given by E(z) = E0cos(xt + /). The beamline is arranged in the following way: (fquad dr cav

dr dquad dr cav dr fquad). The cavity phases have been set so that the first cavity accelerates the beam and
the second decelerates it by the same amount. Since the beam is cold, the rms equations describe the prob-

lem exactly, as long as the beam remains cold and uniform, so there is a matched condition where the final

envelopes are identical to the initial values. We obtained the matched solution by solving the envelope
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equations in three dimensions [29]. The Synergia toolkit includes envelope equation solvers used to find
matched beam parameters. We generated a numerical realization of the matched uniform distribution

consisting of 100,000 particles. These particles were used as the input of both Synergia and ML/I.

The comparison between the Synergia and ML/I codes demonstrates that both implementations are

consistent, and, most importantly, that they are in excellent agreement with the theoretical expectations

for the test cases shown. In addition, the small differences in the obtained results demonstrate the level

of uncertainty due to different choices of solvers and their parameters.

Another simple comparison we can make with analytic calculations is to compare the Laslett tune shift

for a K-V beam with results from a Synergia simulation. We use the formula [20]
Dm ¼ �Nr0
8pb2c3�rms

; ð17Þ
where N is the number of particles in the beam, r0 is the classical proton radius and �rms is the unnormalized
rms emittance as defined in Eq. (15). The Synergia prediction for the tune shift is obtained by taking the

peak of the Fourier transform of the horizontal and vertical position of individual particles, as a function

of s, sampled each cell (24 times per turn) for 100 turns. Here, s is the coordinate along the path of the ref-

erence (or design) trajectory. By sampling each cell, we are able to extract the integer portion of the tune.

Sampling once per turn is sufficient to extract the fractional tune. In Fig. 9, we show the comparison be-

tween the results from Eq. (17) and Synergia for the FNAL Booster (‘‘bare’’ lattice, as described above)

and for different beam currents. The agreement is very good; we thus conclude that Synergia can reliably

reproduce analytical calculations of space-charge effects.

5.2. Application to the FNAL Booster

In this section, we present initial results from Synergia studies of beam behavior in the FNAL Booster

during the first few hundred turns after injection.
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The Booster accelerator [7] is the first circular accelerator in FNAL�s accelerator chain. It is a synchro-

tron, i.e. the field of its magnets changes with time, as the beam gets accelerated, in order to keep the beam

radius constant. The Booster accelerates protons from a kinetic energy of 400 MeV to 8 GeV. It is a rapid-
cycling machine, ramping the field of its magnets at 15 Hz. The Booster radius is 75.47 m and its lattice

consists of 24 lattice units or cells. The main components of each cell are four combined function magnets,

i.e. magnets which combine both quadrupole fields (for focusing) and dipole fields (for bending). The beam

is accelerated by 17 rf cavities, with frequency that slews from 37.7 MHz at injection to 52.8 MHz at extrac-

tion. The nominal average current immediately after injection is �420 mA. Typically, the injection process

lasts for 10 Booster turns. The beam is injected from the FNAL linear accelerator, the linac [18], and it is a

stream of bunches equally spaced at the linac [18] RF frequency of 201.2 MHz.

There are many factors affecting the behavior of the Booster beam, including the energy spread and emit-
tance of the injected beam, nonlinear field errors and space-charge effects. The space-charge effects have long

been believed to be responsible for a significant fraction of the observed losses in the Booster [19] during the

first 2 ms of the cycle (the injection, capture, and bunching phases). In this section we present a rudimentary

study of these effects in an idealized Booster; we will examine these effects in greater detail in a subsequent

paper. For all of the calculations in this paper we have used an idealized ‘‘bare’’ Booster lattice without any

non-linear elements. We defer the inclusion of effects such as magnet offsets, correctors, etc., to a future study.

As our first example, we consider the transverse tune spread due to space charge, using a Booster lattice

without nonlinear beamline elements and without the complications of multi-turn injection, but with real-
istic input beam parameters. The initial beam used in the simulation is a 6-dimensional Gaussian distribu-

tion, with the appropriate correlations to match it to the Booster lattice, accounting for space-charge

effects. The horizontal and vertical rms emittance was 3.05 · 10�6 m rad. The full current was injected in

a single turn. The single-particle optics calculations used transfer maps including both linear and quadratic

terms (second-order maps). The momentum spread, Dp/p, was 0.0003. We used 96 space-charge kicks per

turn, calculated on a 33 · 33 · 257 computational grid with an average of four particles per grid cell. We

followed the beam for 100 turns after injection, recording particle information once per space-charge kick.
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In this comparison, we used currents of 0, 0.105, 0.210, 0.420, 0.630 and 0.840 Amps. As stated previously,

the nominal Booster current is 0.420 Amps.

We compare the Synergia results with the results from the Laslett tune shift formula [20] for a Gaussian

beam,
2 Th
Dm ¼ �Nr0
4pb2c3�rms

. ð18Þ
Note that the above tune shift for a Gaussian beam is a factor of two larger than the tune shift for a K-V

beam in Eq. 17.
Tune shift distributions are frequently presented as scatter plots in two-dimensional transverse tune

space. However, a scatter plot only gives a very qualitative picture of the distribution; the apparent shape

is determined by the statistical outliers, while the internal density in the center is obscured by overlapping

points. We propose the generalized two-dimensional rms ellipse as a quantitative measure of the spread of

tune shifts in the two-dimensional transverse tune space. The ellipse is given by taking the covariance

matrix
C ¼ hx2i � hxi2 hxyi � hxihyi
hxyi � hxihyi hy2i � hyi2

 !
; ð19Þ
decomposing into
C ¼ RRT; ð20Þ

where R is lower diagonal. The ellipse is then parameterized by
x

y

� �
¼ R

sin h

cos h

� �
þ

hxi
hyi

� �
. ð21Þ
For the case of tune spreads, we take x to be the horizontal tune and y to be the vertical tune. The result-

ing rms ellipse is a model-independent, statistically robust representation of the spread of the majority of
the particle tunes.

The results for the different beam currents are summarized in Fig. 10, which shows the transverse tune

spread together with the corresponding generalized two-dimensional rms ellipses. The filled squares in the

figure correspond to the prediction from the Laslett formula for the corresponding beam current (‘‘nomi-

nal’’ refers to the tune prediction for the zero current case).

Since the Laslett formula predicts tune shifts for particles at the core of a stationary beam its prediction

is an upper limit of what we observe in the self-consistent particle simulation. Particles away from the center

of the distribution experience smaller space-charge forces.
As a second example, we study the formation of halo in the case of mismatched beam. In Fig. 11 we plot

the kurtosis2
k �
x� hxið Þ4

D E
x� hxið Þ2

D E2
� 3 ð22Þ
of the beam distribution in each transverse plane as a function of s. The beam parameters are as described

above, with a beam current of 0.420 Amps. We ran four different cases, varying the initial beam conditions:
matched beam with and without momentum spread for single-turn injection, and 20% mismatched beam
ere are multiple possible definitions of kurtosis. Abramowitz and Stegun [21] refer to k defined above as the ‘‘kurtosis excess.’’
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with momentum spread (Dp/p = 0.0003) for single- and multi-turn injection. For these simulations the

lattice does not include any non-linear elements, but since we use second order transfer maps we expect

chromatic effects to contribute to halo creation for non-zero momentum spread. In the cases with mis-
match, the beam has been mismatched in both planes by stretching the width by a factor of l = 1.2 and

adjusting the conjugate momentum distribution to maintain the original emittance.
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We observe that in the matched beam cases, the kurtosis is close to zero and that non-zero momentum

spread has a small effect in the horizontal and no effect in the vertical plane. The reason for the small

difference in the horizontal is due to our matching procedure: we first match the beam correlations for

the presence of dispersion, and then we match for the presence of space charge, neglecting any interaction

between the two effects. This results in a small residual mismatch in the horizontal (non-zero dispersion)
plane. Note that a Gaussian distribution has k = 0. A distribution with k > 0 is known as leptokurtic, while

a distribution with k < 0 is known as platykurtic. In the case of the mismatched beam, the simulation

quickly converges to a leptokurtic distribution, an indication of the halo formation. The multi-turn injec-

tion case shows a smaller increase in kurtosis than the single-turn case since the space-charge effects turn on

gradually, resulting in a painting effect. We note that the authors of [22] use the same method to identify

halo formation, except that they define a new parameter h, the ‘‘spatial-profile parameter.’’ The spatial-

profile parameter is related to kurtosis by h = k + 1.

In order to present a qualitative measure of the amount of halo created in the above simulations, we plot
two dimensional phase space projections of the mismatched beam in both the transverse and longitudinal

planes. Note that for the transverse phase space plots we use normalized coordinates, where x and y are

scaled by l = c/w, with c the speed of light and w the angular frequency, and x 0 and y 0 are scaled by mc,

where m is the proton mass. Figs. 12 and 13 show the evolution of the horizontal and vertical phase spaces,

while Fig. 14 shows the evolution of a slice of the longitudinal phase space. The transverse phase space plots

give a qualitative picture of halo formation. The longitudinal phase space plots show the transition from the

bunched injected beam through debunching to a DC beam. The simulated injected beam models a realistic
Fig. 12. Horizontal (x vs. x 0) phase-space plot for the mismatched beam case. (a) Beam in the beginning of the simulation, (b) after 100

turns.

Fig. 13. Vertical (y vs. y 0) phase-space plot for the mismatched beam case. (a) Beam in the beginning of the simulation, (b) after 100

turns.
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Booster beam at injection which is bunched according to the 200 MHz Linac rf. The phase space slice in

Fig. 14 corresponds to a full period of the 200 MHz rf.

Finally, we investigate how space-charge and chromatic effects affect the emittance of the Booster. In

Fig. 15 we plot the normalized 4-D transverse emittance3 for five different initial beam conditions, described
in the caption of the figure. As expected, in the cases where the beam was matched there is no emittance

growth. That is the case for both zero and non-zero momentum spread, and for space charge. (Our match-

ing procedure takes into account space-charge effects on the second moments of the beam). In the

mismatched cases we observe a 12% increase of the beam emittance during the first 10 to 15 turns after

injection. The effect is a combination of chromatic and space-charge effects and it is very similar for both
3 The 4-D emittance is the square root of the determinant of the covariance matrix of the transverse phase space.
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the single- and multi-turn injection cases. The total current is the same, 0.420 Amps, in both cases. The

emittance growth can be related to the conversion of beam free energy from mismatch oscillations into ther-

mal energy of the beam, due to the effect of the non-linear space-charge forces [31]. We compare our result

with the prediction of the free-energy model for the breathing mode case. In our case, where the space-

charge tune shift divided by the tune is small ðDmm ¼ �1.15%Þ, the free-energy model prediction for emittance
growth can be approximated by
�Tf
�Ti

¼ 1þ 4 ðl� 1Þ2 � ðl� 1Þ3
h i

þ Oððl� 1Þ4Þ; ð23Þ
where l is the mismatch parameter, and �Tf;i are the final (f) and initial (i) 4-D transverse emittances. With a

mismatch parameter of 1.2, as in the case of our simulation, the model predicts a 4-D transverse emittance

growth �Tf =�
T
i ¼ 1.13 to be compared with the 1.12 we obtained from the simulation.
6. Conclusions

In this paper we presented Synergia, a package for simulation of linear and circular accelerators with

self-consistent treatment of space charge and the ability to use arbitrary order transfer maps for modeling

single-particle optics. Synergia provides the tools necessary for non-expert users to easily port and use the

package. The user interface takes advantage of the flexibility of Python to provide a complete and highly

configurable system. The parallel implementation allows us to perform large scale simulations on modern

supercomputers and clusters. We have verified the accuracy of our implementation by comparing Synergia

to semi-analytic results and other codes.
In our initial application of Synergia, we studied beam behavior during the first hundred turns after

injection in the Fermilab Booster. We calculated the particle tune spread and found that the majority of

the particles experience a tune shift much smaller than that predicted by the Laslett formula. We also stud-

ied some mechanisms of beam halo creation and emittance growth. We used the kurtosis of the beam

distribution as a quantitative measure of halo production. We found that if the injected beam is matched

including space-charge effects there is no apparent emittance growth or halo creation. In the case of a

mismatched beam, we found that both chromatic and space-charge effects are important in creating halo

and emittance growth. A more detailed study of such effects and their dependence on initial conditions will
follow in a future paper.
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